
24 The Delphi Magazine Issue 34

Delphi For Time Travellers
by Brandon Smith

If you are a Delphi 2 or 3 program-
mer, your universe starts on the

1st of January year 1 and will end
on the 31st of December year 9999.
This is not a problem for most of
us, but for those doing the system
software for a time machine, there
are obvious drawbacks. Even
within this ten thousand years
Inprise has allowed our software to
live, a time machine controller will
run into some serious problems
with EncodeDate and DecodeDate.
This article discusses these prob-
lems and suggests techniques for
dealing with date problems.

The first problem concerns time
travellers going into the future and
long-term planners. Under the cur-
rent Gregorian system, a few sec-
onds per year are not accounted
for. Therefore, starting in the year
4000, the algorithm normally used
to determine leap years won’t work
correctly. It’ll put us off by a day
approximately every 3323 years
thereafter. The solution is simple:
divide the year by 4000 and, if there
is no remainder, it is not a leap
year. However, even this solution
is not perfect and will lead to the
calendar being off by another day
in about 100,000 years. The source
for this disturbing news is the Cal-
endar entry in the 1911 edition of
the Encyclopaedia Britannica. I’ve
no doubt the most recent edition
contains the same facts, but the
1911 edition is what sits on my
shelf.

Coming back from future
concerns to the present, leap years
are not nearly so much a problem
as leap seconds. The Gregorian,
Julian and Julian Day systems we'll
be looking at operate on the
assumption that the earth travels
around the sun in a fixed period of
time each year. However, it turns
out this is no longer true, as is
described in the boxout on prob-
lems not solved. While I don't think
we need worry about accounting
for leap seconds in most Delphi
apps, these animals are of great

importance to guided missile engi-
neers and bass fishermen, since
their Global Positioning System
toys can only get back to that
sweet spot on the lake if the time is
accurate to 0.1 second per year.

Of much greater import for
Delphi programmers working on
time travel control systems going
into the past or appliations dealing
with historical events or geneal-
ogy, is the fact that Encode-
Date(1752, 9, 12) does not raise an
exception. However, as I’ll explain,
12th September 1752 never hap-
pened in the English speaking
countries. Similarly, 10th October
1582 exists for the English speaking
peoples, but does not exist for
most of the parts of Europe which
were Catholic at the time. It all
starts back before Delphi/Micro-
soft dates exist, back in the days
Before Christ.

When Julius Ceasar was bringing
order to his empire, one of his
major tasks was to align the timing
of civil and religious events. Lest
you think he was being altruistic,
you should realize that before he
tackled it, the temples had charge
of the calendar. The high priests

added or subtracted days so the
religious celebrations would occur
at auspicious astronomical times,
but the high priests had also got
into the habit of moving feast days
around so that elections and other
political events took place at times
more advantageous to the temples
than to the emperor. By the time
Caesar turned his attention to it,
the spring equinox festival, mark-
ing the start of the year, was taking
place three months early, in the
middle of winter. I won’t confuse
you or myself by trying to sort out
how many months a year had
before Caesar set up what has
become known as the Julian calen-
dar, nor will I delve into the strange
way days were identified (which
dismayed even Roman writers).

Julius delegated the task to his
temporal tech support, a guy
named Sosigenes. This expert
came up with a year of 12 months
to which a day was added every
fourth year. The twelve months
were to have alternating lengths of
30 and 31 days, except February,
which would have 29 days for three

➤ Figure 1

June 1998 The Delphi Magazine 25

years, and 30 days on the fourth.
To keep folks on their toes, though,
the extra day wasn’t added to the
end. Instead it was inserted
between the 24th and 25th of Feb-
ruary, another factor which could
make a time machine arrive on the
wrong day, and another factor
which we’ll ignore in our code at
this time. The Julian calendar is
implemented by the following,
which you may notice is not the
logic used in Delphi:

function IsLeapYear(
AYear: Integer): Boolean;

Begin
Result := (AYear mod 4 = 0);

end;

After lengthening the current year,
47 BC, to 445 days to make up for

how far off the reckoning had
become, Caesar implemented the
Julian calendar at the spring equi-
nox, 25 March 46 BC (at least one
source said it was 45 BC...). Unfor-
tunately, when Sosigenes sent the
formal change notification over to
the users in the temples, they
either misread his formula or he
made a mistake and they imple-
mented leap years every third
year. This slight error was not
noticed for 36 years and Augustus
(Octavian) fixed it by issuing new
user instructions stating that there
would be no leap years for the next
nine years.

Also during this early period,
every committee in Rome got its
hands into the pie, resulting in a
month being renamed July in
honor of Julius Caesar and, later,

another month being renamed
August in honor of Augustus. Since
Augustus had to be at least equal
to Caesar, August was also given 31
days. This required the number of
days in the other months to be
shifted around by various commit-
tees and emperors until we ended
up with the arrangement we now
have. Sometime during this period
the beginning of the civil year was
moved from March back to
January.

There seems to be a consensus
that the calendar structure as we
know it has been reasonably
consistent since about 8 AD. The
numbering of the years and use of
AD and BC didn’t start until the 6th
century. Was there a zero year? Let
me quote from Dr Stockton’s web
page (see web sources boxout):
‘The monk Dionysius Exiguus
(Denis the Little), around what
later became 523 AD, did his
calculations, no doubt, in Roman
numerals, so I imagine that he
failed to consider the possibility of
a year zero, and went ... II BC, I BC,
I AD, II AD... Hence, on the present
calendar, no year is numbered
zero, and 1 AD directly follows
1 BC.’

If you happen across a reference
to the year zero, you are probably
reading an astronomical work, and
that year is most likely the one
before 1 AD.

To make sure we remain con-
fused, ‘Julian Date’ is an entirely
different system of counting days
which was invented by Joseph
Justus Scaliger in 1583. Most
sources say he named his system
after his father, Julius Caesar Scali-
ger, but who knows? In any case,
Scaliger Cycle 1 started on 1 Janu-
ary 4712 BC (or 4713 BC) and will
last 7980 (Julian) years, a period of
time established by multiplying
the solar cycle (28 years) by the
lunar cycle (19 years) by the Indic-
tion cycle (the 15 year schedule
upon which ancient Roman taxes
were levied).

Something in Scaliger’s app-
roach appealed to astronomers,
and the Julian Day system is the
standard for expressing astro-
nomical events today, when they
aren’t using the Modified Julian

Julian Day Numbering
Refer to a good encyclopaedia for details on the life of Joseph Justus Scaliger
and how he came up with the system he devised. What his Julian Day Number-
ing system does is establish a universally agreed upon way of establishing the
time of astronomical events. The fact that various sources give different dates
for the calendar date that corresponds to Julian Day One is not of any major
concern since there seems to be nearly universal agreement that Julian Day
Number (JDN) 2,400,000 is noon, GMT, 16 November 1858.

This makes JDN 0 equivalent to 1 January 4713 BC, or 1 January 4712 BC
depending on whether or not you count the year before 1 AD as zero. You
might also see JDN 0 identified as 25 November 4714 BC, in which case what’s
happening is that the Gregorian calendar system has been projected back-
wards in time past the point where it became official. This is called the Prolep-
tic Gregorian calendar.

The reason the days start at noon instead of midnight is that astronomers
work at night. Until 1 January 1925, GMT days started at noon.

Modified Julian Day, MJD, is JD minus 2,400,000.5. This makes MJD days
start at midnight rather than noon and shifts the zero day to 17 November
1858. The main benefit is that modern astronomers have only to deal with 5
digits for most of their dates instead of the 7 they would need for regular
Julian days. 10 October 1995 is MJD 50,000. MJD numbers have the additional
property that (MJD + 999,990) MOD 7 yields the correct day of the week.

Truncated Modified Julian Day sometimes used by NASA is simply the MJD
with the first digit chopped off, or, from another source I read, Truncated
Julian Date is the number of days since the first Apollo mission, 1968-05-24, or
some other date convenient for coding purposes.

You will also find other date numbering systems which are called Julian
dates. When I was a clerk working out of a foxhole in Vietnam, I had to date
supply requisitions with what they called Julian dates. These were simply the
cardinal value of the day of the year preceded by the last digit of the year.
7020 was January 20th, 1967. You may also see Julian dates where 20 January
1967 would be 67020 or 1967020. So for Julian Dates, be aware of the source.

If your mystery date is in an official document published by the Interna-
tional Astronomical Union, the Consultative Committee for Radio, or the
International Telecommunications Union, then you can be reasonably
confident that you are looking at an MJD, and can proceed accordingly.

26 The Delphi Magazine Issue 34

Day system. See the boxout on
Julian Day Numbering.

As it happens, the time it takes
the earth to move from one spring
equinox to the next is 365 days, 5
hours, 48 minutes and 46 seconds
of mean solar time, not the simple
365 and one quarter days that
Sosigenes used to come up with his
system. The author of the 1911 arti-
cle seemed to think Sosigenes
should have noticed this differ-
ence, and perhaps he did. I tend to
think that if I had to put out user
instructions that included division
using Roman numerals, I’d have
also kept it simple.

But there was indeed an error,
and eventually it become notice-
able that the spring equinox was
no longer occurring at the correct
calendar date. By 325, during the
conference in Nice, the equinox
was on the 21st March and by 1582,
when the corrections were finally
applied, it had slipped back to the
11th March. Several temporal
experts had noticed the discrep-
ancy and had submitted bug
reports over the years. But the
guys in charge of the calendar,
working out of their important
seats of power in the Vatican,
ignored the reports submitted by
Bede, Roger Bacon and others.

Finally, by 1474 things had
become so noticeable that Pope
Sixtus IV invited the world’s
foremost astronomer, Regiomon-
tanus, to come to Rome and form
an action-oriented team of super
techs to solve the problem. Unfor-
tunately, Reggie kicked the bucket
before his team was more than half
started and the effort degenerated
into a memo writing CYA exercise
that continued until Pope Gregory
XIII saw the light a bit more than a
hundred years later.

Gregory twisted arms in the vari-
ous capitals of Europe and brought
in a high powered, highly
respected and elderly astronomer
named Aloysius Lillius to put

together the proclamation which
defined the Gregorian calendar.
Aloysius (aka Luigi Lilio Ghiraldi)
turned to a talented systems ana-
lyst named Clavius, who docu-
mented the math behind the new
system in an 800 page manual
called Romani Calendarii a Grego-
rio XIII. P.M. restituti Explicatio
(Rome 1603).

When the new calendar was
implemented, since one of the
goals was to move the spring equi-
nox from the 11th back up to the
21st, Gregory decreed that the day
after the feast of St Francis (the 5th
of October 1582) would become
the 15th of October. And with this
implementation, the new method
for calculating leap years becomes
what we find in Delphi’s source
code (Listing 1).

So, you might wonder, why did
Clavius need 800 pages to say that?
As it turns out, Aloysius had a
related tasking from Gregory that
involved the lunar cycles and the
date of Easter. The reason these
had to be recalculated was that the
system used to work out the lunar
cycles under the Julian system
didn’t work under the Gregorian
system. In order to determine the
date of Easter, and thereby the
dates of the moveable feasts, the
following four rules had been

established at the council of Nice.
First, Easter must be on a Sunday.
Then, this Sunday must follow the
14th day of the paschal moon.
Thirdly, the paschal moon is that
of which the 14th day falls on or
next follows the day of the vernal
equinox. Lastly, the vernal equi-
nox is fixed invariably in the
calendar as the 21st of March.

The system Aloysius came up
with to implement this logic yields
a method of fixing Easter ‘without
the possibility of mistake’, accord-
ing to the Britannica contributor.
Go look it up if you want to learn
what an epact is and otherwise
thoroughly confuse yourself in
three densely packed pages of
tables and formulae. Nonetheless,
the system is still in effect and is
the basis for all the moveable
Christian celebrations. The author
also points out that this system
has the advantage of ignoring the
astronomical vernal equinox date,
though it apparently does a good
job of relating the lunar cycles to
the solar year.

However, the fact remains that
the function used in Delphi and in
Microsoft’s software date calcula-
tions is not valid for dates prior to
15 October 1582. Suppose your
mission as a time patrol person
was to prevent interference with
the sealing of the Magna Carta on
Friday 19 June 1215. If your time
machine’s temporal navigational
system depended on TDateTime-
Picker or DecodeDate(1215,6,19),
you would end up arriving ten days
too late.

function IsLeapYear(AYear: Integer): Boolean;
begin
Result := (AYear mod 4 = 0) and ((AYear mod 100 <> 0) or (AYear mod 400 = 0));

end;

➤ Listing 1

function tstEncodeDate(Year, Month, Day: Word; var Date: TDateTime): Boolean;
var
I: Integer;
DayTable: PDayTable;

const
MonthDays1752: TDayTable = (31, 29, 31, 30, 31, 30, 31, 31, 20, 31, 30, 31);

begin
Result := False;
If year = 1752 then
DayTable := @MonthDays1752

else
DayTable := @MonthDays[IsLeapYear(Year)];

if (Year >= 1) and (Year <= 9999) and (Month >= 1) and (Month <= 12) and
(Day >= 1) and (Day <= DayTable^[Month]) then begin
for I := 1 to Month - 1 do
Inc(Day, DayTable^[I]);

I := Year - 1;
if year <= 1752 then
Date := I * 365 + I div 4 + Day - DateDelta

else
Date := I * 365 + I div 4 - I div 100 + I div 400 + Day - DateDelta;

Result := True;
end;

end;

➤ Listing 2

June 1998 The Delphi Magazine 27

Before taking a look at how we
might modify DecodeDate, we need
to take a look at some other
gotchas in store for the unwary
time travel support engineer.

The foremost gotcha for the Eng-
lish speaking peoples is the fact
that our calendar did not change
back in 1582. We continued to use
the Julian system up to 1750 when,
after some opposition, the Calen-
dar Act was enacted so that busi-
ness and diplomacy with the rest of
Europe could be conducted using
the same calendar. The Act
decreed that the Gregorian system
would be used for all public and
legal dates, and in order to convert
from the Julian system, ‘old style’,
to the ‘new style’ Gregorian
system, Wednesday 2nd Septem-
ber 1752 was followed by Thursday
14th September 1752. In Russia, the
Julian system was in use until Feb-
ruary 1918, and is apparently still
used by the Eastern Orthodox
Church. As we go around the world
today, we will find everywhere the
Gregorian system being used, at
least for business. We will also find
that when and how the Gregorian
system was adopted is unique to
almost every country. Sweden, for
example, victim of a bureaucratic
snafu, has a 30th of February 1712.

If you think this shifting around
of the calendar makes the time
travel support engineer’s job hard,
consider the following: in America,
George Washington’s birthday is
celebrated on 22nd February. Per-
haps one in ten thousand Ameri-
cans also happen to know that his
actual birthday was 11th February
according to the calendar his par-
ents were using during the year he
was born, 1732. I doubt if many
modern history books bother to let
people know that he was really
born on the 11th. Thus, our hardy
time traveller who blithely uses
EncodeDate(1732, 2, 22) will show
up on the right date, but will go into
a panic when he sees a local news-
paper that tells him he has arrived
on the 11th. Most of the pre-1752
dates a time traveller might aim at,
however, will not have been cor-
rected by acts of Congress, and the
result will be showing up several
days late.

I think a temporal software engi-
neer would want EncodeDate to pro-
duce a TDateTime value that would
specify the exact number of days
from a reference point to the date
in question. EncodeDate should
shift from Gregorian to Julian
methods according to the kind of
calendar in operation at the time.
EncodeDate(1752,9,10), for exam-
ple, should raise an exception if we
happen to be travelling in the
history of the English speaking

peoples, but not with French
history.

As a time traveller planning my
vacation, when I ask my naviga-
tional system to show me June
1066, I will be wanting to aim my
machine at a Sunday, so that I can
arrive when most folks are in
church and not likely to notice my
arrival. I need the calendar I see to
reflect the month as it was then,
not as my current, Gregorian,
system would think June 1066 was .

Web Sources For Calendar Information
I found dozens of websites with information about calendar systems. Most of
them are linked to each other, so you can start exploring just about any-
where. Some seem to be more authoritative than others, but even amongst
the most official you will find disagreement. Probably the best FAQ on calen-
dar issues is the Calendar FAQ at www.pip.dknet.dk/~c-t/calendar.html. For
the Pascal code which I based my own conversion routines on, visit Dr. John
Stockton’s Date and Time Miscellany page at www.merlyn.demon.co.uk/
misctime.htm. This page and the related pages and links from his site will give
you a good overview of what’s happening in the date conscious world as we
head to the year 2000, as well as links to most of the places mentioned below.
For a detailed set of links, a good place to start is Calendar Bookmarks at
http://sal.cs.uiuc.edu/~nachum/calendars.html. Another detailed set of links
that also includes astronomical stuff is the Calendrical and Astronomical Links
at www.magnet.ch/serendipity/hermetic/cal_stud/cal_lynx.htm.

For more information on leap seconds and how the atomic clock in Boul-
der, Colorado, is adjusted, there are some Proposed answers to selected ques-
tions at www.bldrdoc.gov/timefreq/faq/faq.htm, and a more detailed
description from the International Earth Rotation Service at http://tycho.
usno.navy.mil/time.html. One of the more interesting places I found shows
today’s date in what seems like over a hundred different calendar systems. It’s
at www.panix.com/~wlinden/calendar.shtml. Several pages offer conversion
facilities. One such is Calendar Conversions at http://genealogy.org/~scottlee/
calconvert.cgi. Scott Lee’s site also has C code for converting to and from a
number of different calendar systems. For Java, Lisp and a number of other
languages, Nachum Dershowitz and Edward M. Reingold probably have the
best site at http://emr.cs.uiuc.edu/home/reingold/calendar-book/index.shtml,
where they promote their Cambridge University Press book Calendrical Calcu-
lations. I’d have liked to read the book, but it’s not available in my neck of the
woods. I did glance at the Java code, a translation done by Robert C McNally,
and found it inspirational. I must confess, however, that even though I’ve
loaded JBuilder and have managed to make a couple of applets work, I still
prefer Pascal. For a detailed exploration of calendar history that’s very well
organized, visit Bill Hollon’s site at http://www.greenheart.com/billh/
linked.html. He includes a glossary that defines most terms associated with
calendars you are likely to come across.

A good reference for Julian Day Numbers is Peter Meyer’s page at
http://www.magnet.ch/serendipity/hermetic/cal_stud/jdn.htm, which is asso-
ciated with the calendar and astronomical link page I mentioned earlier.
What I find fascinating about this page is the bottom, where the algorithm
for converting between Gregorian and Julian Day Numbers is spelled out.
With different constants than those defined in Numerical Recipes in Pascal. A
visit to the SWAG site at http://www.gdsoft.com/swag/swag.html will pro-
duce a number of Pascal procedures and functions, each of which seems to
use a different set of constants.

28 The Delphi Magazine Issue 34

To get this kind of calendar, we’ll
need to add branching logic into
the existing routines. For example,
we could modify EncodeDate as
shown in Listing 2.

When testing this, however, I did
not come up with the results I
expected. 11 February 1732 gives
me a value of -61305 rather than the
-61307 I think I should get. As I
started looking for what might be
causing the discrepancy, it
occurred to me that this approach
is not very flexible anyway. My
time machine lets me move in
space as well as time, so how do I
deal with destinations before 1582
in Italy or before 1712 in Sweden?

At first glance, the approach
used by Dr. Stockton in
MJD_DATES.PAS provides the basic

Type
TCalendarDate = record
Year, Month, Day : integer;

end;
TMJD = double; // This will be our baseline number.
TLinkDate = record
//a date in the current calendar and its MJD equivalent
Date : tCalendarDate;
MJD : TMJD;

end;
TGregorianChangeRec = record
// MJD value of last date in in system, first in new
LastMJD : TMJD;
// Last date in old system, first date of new system
LastDate : tCalendarDate;
// days +/- to add/delete to/from calendar
Adjustment : integer;
// day of month/year + adjustment =
// first date Gregorian system in use

end;
TmonthStructure = class
// convenient way to ensure we have a place
// to put unique months
private
fNumDays : integer;
fName : string;
fMissingDaysStart,
fMissingDaysEnd : integer;

public
constructor BuildMonth(const aName : string;
const aNumDays, StartMissing, EndMissing : integer);

function HasMissingDays(var First, Last : integer):
boolean;

Property NumDays : integer
read fNumDays write fNumdays;

property Name : string read fName write fName;

Property FirstMissingDay : integer
read fMissingDaysStart write fMissingDaysStart;

Property LastMissingDay : integer
read fMissingDaysEnd write fMissingDaysEnd;

end;
TYearStructure = class
// a class that ensures we can specify unique year
// structures.
private
fNumMonths : integer;
fMonthList : tlist;
procedure GrowMonthList;

protected
function GetMonthName(index : integer): string;
procedure SetMonthName(index : integer;
aName : string);

function GetMonthLen(index : integer): integer;
procedure SetMonthLen(index : integer;
aLen : integer);

function GetMonthStruc(index : integer):
tMonthStructure;

procedure setMonthStruc(index : integer;
aStruc : tMonthStructure);

public
constructor create;
destructor destroy; override;
property NumMonths : integer
read fNumMonths write fNumMonths;

property MonthName[index : integer] : string
read getMonthName write setMonthName;

Property MonthLen[index : integer] : integer
read getMonthLen write setMonthLen;

Property MonthObj[index : integer] : tMonthStructure
read getMonthStruc write setMonthStruc;

end;

➤ Listing 3

flexibility we need. He has written a
group of functions for converting
Julian to Gregorian dates by pass-
ing them through an MJD baseline,
established by the fact that MJD
50,000 is 10 October 1995. Scott Lee
has written a group of C programs
that use a similar approach using
what he calls Standard Day Num-
bers, which are essentially the
same as regular Julian Days. Lee’s
conversion routines also cover
Jewish, Islamic and other calendar
systems. See the box on web
sources for where to find these
programs.

In the spirit of Delphi, however,
I’m looking for something a bit
more than conversion functions,
despite the fact that EncodeDate
and DecodeDate are themselves

TCalendarDef = class
Private
fName : string; // name, e.g. English, Swedish, Roman
fDate : TLinkDate; // Date we are currently working with
fAstro : boolean; // set true to insert a year zero between 1BC and 1AD
fYearDef : TYearStructure;
fDayName : TStringlist; // count is the number of days per week
fDayStart : double; // 0.0 = midnight, 0.5 = noon, etc.
fIsLeapYear : tLeapYearRule;
fOnEncode : tEncodeDateProc;
fOnDecode : tDecodeDateProc;
fAlignmentDate : TLinkDate;
// name of calendar system before fGregorian date
fNameOfPreviousSystem : string;
fGregorianDate : TGregorianChangeRec;
// true means use previous system for dates before Gegorian dates
// ie do not use proleptic calculations
fSwitchOnChangeDate : boolean;

Protected
function getDate : TLinkDate; virtual; abstract;
procedure setDate(avalue : tLinkDate); virtual; abstract;

...

➤ Listing 4

SEPTEMBER 1752

S M Tu W Th F S

1 2 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

➤ Figure 2

simply functions in SYSUTILS.PAS.
What I’m looking for is something
more along the lines of TDateTime-
Picker that will correctly handle
September 1752. So that it will
show up looking something like
Figure 2.

Now we get to the place where I
have to ask my unknown users,
both component users and their
end users, how should we handle
dates before the changeover?
Time travellers, historians and
genealogists would probably want
to see the Julian calendar date.
Should we have some kind of
graphic or symbol to alert users
that we changed the way we are
computing dates? If you are in an
Islamic country, or Israel, or China,
you probably want recent dates in
the same Gregorian system the
rest of us are using, but when you
are scrolling a calendar back into
the past, would you want the calen-
dar structure, month names, etc.

June 1998 The Delphi Magazine 29

to change when you got past a
certain point?

To achieve the kind of flexibility
we need to be able to handle any
set of answers to these questions,
object orientation can help us.
There is a set of Java programs that
may perhaps contain the kind of
structure we are looking for. Based
on the work of Nachum Dershowitz
and Edward M. Reingold in their
book Calendrical Calculations, pub-
lished by Cambridge University
Press, the Java class hierarchy was
created by Robert C McNally. See
the web sources boxout.

I’m not sure if I want to tackle
translating what McNally has done
to Delphi or not.

I’m going to propose a basic set
of classes for flexible calendars
and discuss some of the code
needed to implement them.

The first group of types merely
set up some convenient structures
for later use, see Listing 3.

To provide a home base for our
calendar systems, the following
class is designed to be inherited
from rather than instantiated.

TCalendarDef abstracts the facts
surrounding a change from one
method of computing dates to
another by completely defining the
year and month being worked with.
For any particular culture, then,
the facts surrounding that cul-
ture’s shift from one calendar to
another can be expressed by typed
constants or by modifying the
descendant class at runtime, see
Listing 4 (I’ve left out the redun-
dant private get and set methods
to save space here). Perhaps
Inprise could consider setting up
Delphi so that read and write por-
tions of property declarations are
in fact forward method declara-
tions. Sure would cut down on the
typing, especially if there was a
button to generate the stubs
(Listing 5).

To define the English calendar,
all we need are a few typed
constants and a descendant of
TCalendarDef. However, keep in
mind that, for example, if you were
to derive a component for the
Jewish calendar, you could not use
typed constants since the change

date aspect of this would need to
be a runtime phenomenon: in
Israel, the official calendar is not
Gregorian, but almost all busi-
nesses with any international con-
nection do use the Gregorian
calendar. So an Israeli calendar
component would have to allow
for shifting the change date to any
date: see Listing 6.

To instantiate the English calen-
dar, all we need is the constructor
implementation shown in Listing 7.

The real work of the new calen-
dar system is in the Encode and
Decode methods, which are to be
found on this month’s disk in the
file BASEDATE.PAS, where I’ve
implemented the above described
classes.

As my test project shows (see
Figure 1), the component works: it
gives us an error for the missing
dates in September 1752, and auto-
matically shifts to Julian for dates
prior to that as shown when you
move the numbers over to the
standard Delphi TDateTime and
back again. The code on the disk
also includes the complete class

30 The Delphi Magazine Issue 34

definitions and a modified calen-
dar display component, along with
a test project for illustrating what
we’ve learned about the calendar
in this article.

However, there are many factors
I did not build into my code. Most
of them are listed in the boxout
entitled Problems Not Solved.

A few comments about the code
are in order. The algorithms I used
for Encode and Decode are directly
derived from Dr Stockton’s work
(see web sources boxout and the
HTML link page I’ve included on
this month’s disk). However, I was
able to directly use very little of his
actual code for three reasons. The
most important reason is that I am
using properties at several points
rather than the typed constants he
used. The second reason is that
Delphi 3 seems to be a lot stricter
about parameter passing than
Turbo Pascal 7 was. The most triv-
ial reason, and the most frustrat-
ing, was that when I pasted from
the text file I downloaded into the
Delphi IDE, something apparently
went wrong with the line endings. I
kept getting spurious errors until I
exited Delphi, pulled up the Pascal
source file in my text editor and
used the end of line override func-
tion to save it back with a CRLF at
the end of each line.

I got the YMD to MJD method to
work in fairly short order, though I
was puzzled at first by why his
month array started with March
instead of January. Going the other
way had me stumped for several
days, however. I backed out of his
logic and implemented the logic I
found in Numerical Recipes for
Pascal, which worked, but was off
by one day because it is based on
regular Julian Day Numbers, which
start at noon. The Numerical Reci-
pes logic is included in the source
code, commented out. I took a
break and, upon my next attempt,
got Stockton’s logic to work.

What always amazes me is how
two such different approaches
come up with the same answer.
The secret is in the constants, I
suppose. Delphi’s constants and

Procedure fEncodeDate(var MJD : TMJD; const aYear, aMonth, aDay :integer);
virtual; abstract;

Procedure fDecodeDate(const MJD : TMJD; var aYear, aMonth, aDay :integer);
virtual; abstract;

Property CalendarName : string read fName write fName;
Property OldCalendarSystemName : string
read fNAmeOfPreviousSystem write fNameOfPreviousSystem;

Property ShowPreviousDatesInPreviousSystem : boolean
read fSwitchOnChangeDate write fSwitchOnChangeDate;

Property Astro : boolean read fAstro write fAstro default false;
Property DaysPerYear : cardinal read GetDaysPerYear; // write SetDaysPerYear;
Property NumberOfMonths : integer
read getNumberOfMonths write setNumberOfMonths;

Property MonthName[index : integer] : string
read getMonthName write setMonthName;

Property MonthLength[index : integer] : cardinal
read getMonthLength write setMonthLength;

Property DayName[index : integer]: string
read getDayName write setDayName;

Property DayStart: double
read getDayStart write setDayStart;

Property AlignmentDate : tLinkDate
read getAlignmentDate write setAlignmentDate;

Property ChangeDate : TGregorianChangeRec
read getChangeDate write setChangeDate;

Public
constructor create; virtual;
destructor destroy; override;
Function IsLeapYear(aYear : integer): boolean; virtual; abstract;
Function EncodeDate(const aYear, aMonth, aDay :integer): tMJD;
virtual; abstract;

Function DecodeDate(const MJD : TMJD): tCalendarDate; virtual; abstract;
Function MSDatefromMJD(const MJD : TMJD): tDateTime; virtual; abstract;
Function MJDfromMSDate(const aDateTime : tDateTime): TMJD; virtual; abstract;

end;

➤ Listing 5

➤ Below: Listing 7➤ Above: Listing 6

const
cEnglishLinkDate : tLinkDate =
(Date: (year: 1995; month : 10; day: 10); MJD: 50000);

cEnglishChangeDate : tGregorianChangeRec =
(LastMJD : cLastMJDEnglish; LastDate: (year: 1752; month: 9; day: 13);
Adjustment: 11);

cNormalMonthLengths : array[1..12] of integer =
(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);

Type
TEnglishCalendar = class(tCalendarDef)
Private
fSeptember1752,
fNormalSeptember : tMonthStructure;

Protected
function getDate : TLinkDate; override;
procedure setDate(aValue : tLinkDate); override;
Property LeapYearRule : tLeapYearRule read fIsLeapYear write fIsLeapYear;

Public
Constructor create; override;
Destructor destroy; override;
Function IsLeapYear(aYear : integer): boolean; override;
Function EncodeDate(const aYear, aMonth, aDay :integer): tMJD; override;
Function DecodeDate(const MJD : TMJD): tCalendarDate; override;
Function MSDatefromMJD(const MJD : TMJD): tDateTime; override;
Function MJDfromMSDate(const aDateTime : tDateTime): TMJD; override;
Property CalendarName;
Property OldCalendarSystemName;
Property ShowPreviousDatesInPreviousSystem;
Property Astro;
Property DaysPerYear;
Property NumberOfMonths;
Property MonthName;
Property MonthLength;
Property DayName;
Property DayStart;
Property AlignmentDate;
Property ChangeDate;

end;

Constructor TEnglishCalendar.create;
var
i : integer;

begin
inherited create;
SetAlignmentDate(cEnglishLinkDate);
SetChangeDate(cEnglishChangeDate);
FYearDef.NumMonths := 12;
for i := 1 to 12 do
FYearDef.MonthObj[i] := tMonthStructure.buildMonth(longMonthNames[i],
cNormalMonthLengths[i], 0, 0);

fSeptember1752 := tMonthStructure.buildMonth(LongmonthNames[9], 19, 3, 13);
fNormalSeptember := tMonthStructure.buildMonth(LongmonthNames[9], 30,0,0);
for i := 1 to 7 do
FDayName.add(LongDayNames[i]);

fSwitchOnChangeDate := true;
fNameOfPreviousSystem := 'Julian';
fName := 'English';

end;

June 1998 The Delphi Magazine 31

Stockton’s constants are very
similar in that they are both sets of
integers and specify the number of
days in different types of years.
The Numerical Recipes constants
are of type real and are simply
inserted inline, they reflect an
entirely different approach. You
will find several other methods for
doing these calculations, most of
them using a different set of
constants.

Constants in algorithms and
formulae have always bothered
me. I’m sure there is a good reason
for a line like the following one
extracted from the middle of the
Numerical Recipes code:

je := trunc((jb-jd) / 30.6001);

It’s been my experiance that the
reason is usually something like
‘because it works.’ When I go on to
ask why, I usually get that stare
reserved for ditch diggers and
infants. So now, in my mature
years, I just use what I find and if it
doesn’t work, I look elsewhere.
That still doesn’t stop me from

Year 2000 Concerns
I had been blithely going along ignoring the whole year 2000 hul-
laballo, knowing that my Delphi creations were using TDateTime and
therefore were faithfully storing the century along with the last two
digits of the year. Not that I haven’t been hoping for some work to
come my way converting someone’s old dBase file, or perhaps some-
one’s Turbo Pascal 3 program which ignored the century by being
clever with strings. But the real problem, I’d always assumed, was
monster applications written in COBOL back in the 50s and 60s. I can
wade through COBOL code, but no way can I call myself a COBOL pro-
grammer.

However, what I didn’t realize was that there are built-in bugs in
many of the hardware platforms currently being used. For example,
John Stockton (see the web sources boxout) points out that ‘In many
cases, the clock chip and ROM BIOS of a PC will not correctly handle
the 1999 to 2000 transition, going to a date in 1980; but will work
properly thereafter, after the date has been corrected once ...’

If you are into defensive coding, you’ll need to look into this area.
Some platforms will have machine code controlling them which has
been assembled to think the year 2000 will not be a leap year. Who
knows, the Bios controlling your PC may have been coded by some-
one who watched the Opra Winfrey show when her audience
decided the year 2000 would have a February 30th.

www.itecuk.com for...
News, information about upcoming issues, contacts,
freebies, online article index database and more...

32 The Delphi Magazine Issue 34

Problems Not Solved
Here are the issues not solved in my component:

1. The actual year, the number of days between one
equinox and the next, varies. According to the Calendar
FAQ (see web sources boxout), around 1900 the year was
365.242196 days. By about 2100 it will be 365.242184
days. The Julian system assumes every year is 365.25 days.
The Gregorian system assumes every year is 365.2425
days. There is apparently a regular cycle of number of
days in the year that repeats every 21,000 years.

2. However, the leap second adjustments made to the
atomic clocks are based on observation, not mathemati-
cal calculations, of the earth’s orbit. As the Naval Obser-
vatory in Washington DC puts it, ‘The earth is constantly
undergoing a deceleration caused by the braking action
of the tides. [...] Other factors also affect the earth, some
in unpredictable ways, so that it is necessary to monitor
the earth’s rotation continuously.’ So the world’s atomic
clocks have been adjusted by a second approximately
every 500 days since 1972. So far, each of the adjustments
have been to add a second. One of the main reasons the
world’s chronological authorities, such as the Interna-
tional Earth Rotation Service, adjust clocks to the actual
rotation of the earth is so that the satellites used for the
Global Positioning Systems are accurate with regard to
the signals they send down to the bass fisherman trying
to get to that spot in the lake where he was last time.

3. These two factors make any use of constants in our
date conversion algorithms a bit suspect, at least for a
time traveller who wishes to arrive on the date selected.
If I were going back to 50,000 BC, I don’t think I’d care
much if I arrived on a Tuesday when I was shooting for
Friday. But I would be upset if I was shooting for summer
and ended up in winter.

4. The day added to make a leap year is not really 29
February, but rather the 24th. I’m not sure this is worth
pursuing, though if a time traveller is trying to go back to
a date expressed as a name day rather than a calendar
date, and that name day is associated with a date
between 23 and 29 February, this fact becomes critical.

5. From 46 BC to 12 AD the arrangement of months
with the year and the number of days per month shifted
around quite a bit. It would appear the information is
available to classical scholars and that special TMonth-
Structure and TYearStructures could probably be
added as typed constants to describe this period. How-
ever, the IsLeapYear function would also need special

logic to handle the period when the leap years were
added every third year, then skipped entirely to make up
the extra gain.

6. Nothing in this component is set up for handling cal-
endar systems based on the lunar cycles, such as the Jewish
system. A TLunarStructure could surely be devised to
handle the task. However, the actual length of a lunar
cycle also varies over time. In addition, there are some
modern Islamic countries where the start of the month is
determined by actual observation of the moon rather
than by a precalculated system. I’m not sure I’d care to
attempt writing the code to support a forward travelling
time machine in one of those countries.

7. New Year’s Day has also varied over the centuries.
Thus, it is quite possible to find a document dated 2 Febru-
ary 1306 which refers to 2 June 1307 and means four
months from then, not a year and four months, since the
year changeover was to occur on 1 March, or 25 March, or
the Saturday before Easter. The TYearStructure is not
currently set up to handle this kind of variation in how a
year is defined. A time traveller trying to be at the signing
of a document would not only have to know which cul-
ture he was going to, but also what kind of document. For
example, the Calendar FAQ points out that:

‘In England (but not Scotland) three different years
were used. The historical year, which started on 1 January.
The liturgical year, which started on the first Sunday in
Advent. The civil year, which from the 7th to the 12th
century started on 25 December, from the 12th century
until 1751 started on 25 March, from 1752 started on 1
January.’

8. TDateTimePicker doesn’t always work if the Date
property is set to anything less than zero. It doesn’t error
off, and the date value is accepted, but sometimes it
doesn’t show the new date.

9. TDateTime will not work at all for dates prior to 1/1/1
in the Proleptic Gregorian Calendar, nor will it work for
dates after 12/31/9999. This means that the various for-
matting and conversion routines won’t work beyond
those limits either. The TCalendarDef class does not
include replacements for formatting dates, though it will
convert back and forth between MJD and TDateTime
within the limits of TDateTime. However, conversions of
dates before the calendar reformation may not give you
what you are expecting.

wondering where on earth these
constants come from.

Conclusions
The basic fact you should have
learned from this article is that the
calendar is not a fixed entity and
that Delphi’s date and time func-
tions and procedures only work
within a limited time span. By
implication, you should also have

learned that should you put a date
field in an application targeted at
cultures other than your own, you
may have much more than Win-
dows’ international settings to con-
tend with, especially if a user might
need to use your application to
work with historical events. In the
meantime, I’d welcome any sugges-
tions for generalizing TCalendarDef
to handle other systems, as well as

a chance to see some specific
descendants at work.

Brandon Smith is currently work-
ing for Rose International, doing
Delphi and web development. He
can be reached by email at
delphi@synature.com or visited at
www.synature.com

	Julian Day Numbering
	Web Sources For Calendar Information
	Year 2000 Concerns
	Problems Not Solved

